Better integration of climate action and sustainable development can help enhance the ambition of the next nationally determined contributions, as well as implementation of the Sustainable Development Goals. Governments should use this year as an opportunity to emphasise the links between climate and sustainable development.
The 2015 Paris Agreement relies on Nationally Determined Contributions (NDCs) to outline each country’s policies and plans for reducing greenhouse gas (GHG) emissions. To strengthen global climate action and achieve the Agreement’s temperature goal, it is crucial to enhance the ambition level of NDCs every 5 years. While previous studies have explored the ambition of initial NDCs, limited research has delved into the factors driving the enhancement or lack thereof in NDCs’ emission reduction plans. This study employs a mixed-method design to investigate the determinants of NDC enhancement. First, we analyse the updated or revised NDCs of 111 countries using quantitative methods. Second, we conduct qualitative case studies focusing on Brazil and South Africa. Our findings reveal that countries that engaged in stakeholder consultations with civil society, business, and labour groups prior to developing their updated or revised NDCs were more likely to enhance their greenhouse gas reduction targets. These results are further supported by the case studies. South Africa conducted comprehensive consultations and submitted an enhanced GHG target, while Brazil, which did not arrange open consultations, did not improve its target. This study underscores the significance of comprehensive and transparent stakeholder engagement processes, highlighting their potential to drive enhanced NDCs. By involving diverse stakeholders, including civil society, business, and labour groups, countries can foster greater ambition and effectiveness in their climate action, ultimately contributing to the global effort to combat climate change.
India has indicated a strong commitment towards mitigating climate change not only through its Nationally Determined Contribution (NDC) but also reiterating on raising its climate ambitions and committing towards Net Zero (NZ) in Glasgow. This study couples the bottom-up technology-rich energy system model with a macroeconomic computable general equilibrium model to assess the socio-technical, financial and macro-economic implications of India's energy sector transformation away from coal. In order to move towards its NZ target by 2070, India will need to restructure its coal-based power and industry sector. This study provides insights on the challenges (stranded assets, loss of revenue) as well as the opportunities from energy sector restructuring (job creation, energy import reduction, improvement of local environment and human health).
At the next United Nations (UN) climate conference in the United Arab Emirates at the end of 2023, the first Global Stocktake (GST) of the Paris Agreement is due to conclude. The main goal of this process is to feed into a new round of Nationally Determined Contributions (NDCs) by Parties to the Agreement for 2035. In addition, the GST is aimed at identifying opportunities for strengthening international cooperation to achieve the Paris goals. The GST represents the first opportunity for Parties and other stakeholders to collectively highlight opportunities for international climate cooperation. Specifically, outcomes should plant the seeds for the development of concrete sectoral decarbonization roadmaps that could guide international cooperation in years to come.
Notwithstanding the clear contribution of fossil fuel production and consumption to global greenhouse gas emissions, fossil fuels have remained largely outside the focus of the international regime established by the United Nations Framework Convention on Climate Change. The 2021 Glasgow Climate Change Conference (COP26) marked an important change, however, with fossil fuels featuring prominently in the intergovernmental negotiations as well as on the side-lines of the conference. Here we discuss these developments as a site for contestations around “anti-fossil fuel norms.” We argue that anti-fossil fuel norms are increasingly being adopted and institutionalized. However, ongoing contestation among proponents and opponents of measures to tackle fossil fuels raises important questions over the specific content of emerging norms, the role of the fossil fuel industry in climate governance, the extent to which these norms “fit” with their broader normative context, and the conditions of North–South cooperation in which such norms are to be implemented.
Morocco's Nationally Determined Contribution (NDC) targets are recognised as one of the most ambitious globally. This study analyses the energy system, emission, and cost impacts of meeting Morocco's (conditional and unconditional) targets for 2030 and assesses long-term Paris-compatible strategies. A sophisticated country-level energy system model that incorporates detailed representations of energy demand and supply is used to analyze various scenarios with different climate policy settings. The analysis shows that current policies in Morocco need significant strengthening to meet the targets outlined in its Nationally Determined Contribution for 2030, based on the elimination of coal-fired power plants and the uptake of renewable energy technologies, in particular wind and solar power. The long-term transformation to a low-emission economy is based on accelerated energy efficiency improvements, electrification of end uses, further expansion of renewable energy, and emergence of low-carbon fuels. The study provides insights on the challenges to achieve deep decarbonization of Moroccan economy without compromising its energy security, but also on the opportunities from energy sector restructuring, including reduction of fossil fuel imports and boost clean investment.
Given concerns about the ambition and effectiveness of current climate policies, a case has been made for the combination of demand-side policies such as carbon pricing with supply-side bans on fossil fuel extraction. However, little is known about their interplay in the context of climate stabilization strategies. Here, we present a multi-model assessment quantifying the effectiveness of supply-side policies and their interactions with demand-side ones. We explore a variety of fossil fuel bans with four integrated assessment models and find that international supply-side policies reduce carbon emissions but not at sufficient levels to stabilize temperature increase to well below 2°C. When combined with demand-side policies, supply-side policies reduce the required carbon price, dampen reliance on CO2 removal technologies, and increase investment in renewable energy. The results indicate the opportunity to integrate fossil fuel bans alongside price-based policies when exploring pathways to reach ambitious mitigation targets.
The Paris Agreement requires a drastic reduction of global carbon emissions towards the net zero transition by mid-century, based on the large-scale transformation of the global energy system and major emitting sectors. Aviation and shipping emissions are not on a trajectory consistent with Paris goals, driven by rapid activity growth and the lack of commercial mitigation options, given the challenges for electrification of these sectors. Large-scale models used for mitigation analysis commonly do not capture the specificities and emission reduction options of international shipping and aviation, while bottom-up sectoral models do not represent their interlinkages with the entire system. Here, I use the global energy system model PROMETHEUS, enhanced with a detailed representation of the shipping and aviation sector, to explore transformation pathways for these sectors and their emission, activity, and energy mix impacts. The most promising alternative towards decarbonizing these sectors is the large-scale deployment of low-carbon fuels, including biofuels and synthetic clean fuels, accompanied by energy efficiency improvements. The analysis shows that ambitious climate policy would reduce the trade of fossil fuels and lower the activity and the mitigation effort of international shipping, indicating synergies between national climate action and international transport.
The evolution of the Tunisian energy system in the next few decades will highly depend on the implementation of its Nationally Determined Contribution by 2030 and its potential long-term low-emission strategies. This study analyses the technology, emissions, energy systems, and economic impacts of meeting Tunisia’s NDC targets (conditional and unconditional) and long-term transition pathways compatible with the Paris Agreement. Different climate policy targets and settings are explored using a detailed energy system model (MENA-EDS) that integrates detailed representations of energy demand and supply and their complex linkages through energy pricing. The analysis shows that in order to meet its NDC targets for 2030, current climate policies in Tunisia need substantial strengthening, based on the massive uptake of renewable energy technologies (especially solar PV and wind) and a reduction of oil and gas use. Long-term low-emission transitions leading to emission reductions of about 80% from baseline levels in 2050 is based on the further expansion of renewable energy within and beyond the electricity sector; the increased electrification of energy end-uses (especially through the uptake of electric vehicles in transport); accelerated energy efficiency improvements in transport, industries and buildings; and the emergence of low-carbon fuels. The study provides insights into the challenges to achieve the deep decarbonization of the Tunisian economy but also into the opportunities from energy sector-restructuring, including reduced energy import dependence and increased low-carbon investment.
Transport accounts for 24% of global CO2 emissions from fossil fuels. Governments face challenges in developing feasible and equitable mitigation strategies to reduce energy consumption and manage the transition to low-carbon transport systems. To meet the local and global transport emission reduction targets, policymakers need more realistic/sophisticated future projections of transport demand to better understand the speed and depth of the actions required to mitigate greenhouse gas emissions. In this paper, we argue that the lack of access to high-quality data on the current and historical travel demand and interdisciplinary research hinders transport planning and sustainable transitions toward low-carbon transport futures. We call for a greater interdisciplinary collaboration agenda across open data, data science, behaviour modelling, and policy analysis. These advancemets can reduce some of the major uncertainties and contribute to evidence-based solutions toward improving the sustainability performance of future transport systems. The paper also points to some needed efforts and directions to provide robust insights to policymakers. We provide examples of how these efforts could benefit from the International Transport Energy Modeling Open Data project and open science interdisciplinary collaborations.
To achieve the Paris Agreement’s temperature goal, fossil fuel production needs to undergo a managed decline. While some frontrunner countries have already begun to adopt policies and measures restricting fossil fuel supply, an outstanding question is how international cooperation in support of a managed decline of fossil fuel production could take shape. This article explores two possible pathways—one following a club model and the other more akin to a multilateral environmental agreement. Specifically, the article discusses the participants in an international agreement; the forum through which cooperation will take place; the modalities, principles, and procedures underpinning the agreement; and the incentives to induce cooperation. The article concludes that the most likely scenario at this juncture is the emergence of club arrangements covering particular fossil fuel sources and groups of actors that, over time, give rise to growing calls for a more coordinated and multilateral response.
Decarbonizing global steel production requires a fundamental transformation. A sectoral climate club, which goes beyond tariffs and involves deep transnational cooperation, can facilitate this transformation by addressing technical, economic and political uncertainties.
Technological breakthroughs and policy measures targeting energy efficiency and clean energy alone will not suffice to deliver Paris Agreement-compliant greenhouse gas emissions trajectories in the next decades. Strong cases have recently been made for acknowledging the decarbonisation potential lying in transforming linear economic models into closed-loop industrial ecosystems and in shifting lifestyle patterns towards this direction. This perspective highlights the research capacity needed to inform on the role and potential of the circular economy for climate change mitigation and to enhance the scientific capabilities to quantitatively explore their synergies and trade-offs. This begins with establishing conceptual and methodological bridges amongst the relevant and currently fragmented research communities, thereby allowing an interdisciplinary integration and assessment of circularity, decarbonisation, and sustainable development. Following similar calls for science in support of climate action, a transdisciplinary scientific agenda is needed to co-create the goals and scientific processes underpinning the transition pathways towards a circular, net-zero economy with representatives from policy, industry, and civil society. Here, it is argued that such integration of disciplines, methods, and communities can then lead to new and/or structurally enhanced quantitative systems models that better represent critical industrial value chains, consumption patterns, and mitigation technologies. This will be a crucial advancement towards assessing the material implications of, and the contribution of enhanced circularity performance to, mitigation pathways that are compatible with the temperature goals of the Paris Agreement and the transition to a circular economy.
Emissions pathways after COVID-19 will be shaped by how governments’ economic responses translate into infrastructure expansion, energy use, investment planning and societal changes. As a response to the COVID-19 crisis, most governments worldwide launched recovery packages aiming to boost their economies, support employment and enhance their competitiveness. Climate action is pledged to be embedded in most of these packages, but with sharp differences across countries. This paper provides novel evidence on the energy system and greenhouse gas (GHG) emissions implications of post-COVID-19 recovery packages by assessing the gap between pledged recovery packages and the actual investment needs of the energy transition to reach the Paris Agreement goals. Using two well-established Integrated Assessment Models (IAMs) and analysing various scenarios combining recovery packages and climate policies, we conclude that currently planned recovery from COVID-19 is not enough to enhance societal responses to climate urgency and that it should be significantly upscaled and prolonged to ensure compatibility with the Paris Agreement goals.
The Paris Agreement seeks to combine international efforts to keep global temperature increase to well-below 2°C. Whilst current ambitions in many signatories are insufficient to achieve this goal, optimism prevailed in the second half of 2020. Not only did several major emitters announce net-zero mitigation targets around mid-century, but the new Biden Administration immediately announced the U.S.’s re-entry into Paris and a net-zero goal for 2050. U.S. federal re-engagement in climate action could have a considerable impact on its national greenhouse gas emissions pathway, by significantly augmenting existing state-level actions. Combined with U.S. re-entry in the Paris Agreement, this could also serve as a stimulus to enhance ambitions in other countries. A critical question then becomes what such U.S. re-engagement, through both national and international channels, would have on the global picture. This commentary explores precisely this question, by using an integrated assessment model to assess U.S. national emissions, global emissions, and end-of-century temperatures in five scenarios combining different climate ambition levels in both the U.S. and the rest of the world. Our analyses find that ambitious climate leadership by the Biden Administration on top of enhanced climate commitments by other major economies could potentially be the trigger for the world to fulfill the temperature goal of the Paris Agreement.
The Paris Agreement has set out ambitious climate goals aiming to keep global warming well below 2 °C by 2100. This requires a large-scale transformation of the global energy system based on the uptake of several technological options to reduce drastically emissions, including expansion of renewable energy, energy efficiency improvements, and fuel switch towards low-carbon energy carriers. The current study explores the role of Carbon Capture and Storage (CCS) as a mitigation option, which provides a dispatchable source for carbon-free production of electricity and can also be used to decarbonise industrial processes. In the last decade, limited technology progress and slow deployment of CCS technologies worldwide have increased the concerns about the feasibility and potential for massive scale-up of CCS required for deep decarbonisation. The current study uses the state-of-the-art PROMETHEUS global energy demand and supply system model to examine the role and impacts of CCS deployment in a global decarbonisation context. By developing contrasted decarbonisation scenarios, the analysis illustrates that CCS deployment might bring about various economic and climate benefits for developing economies, in the form of reduced emissions, lower mitigation costs, ensuring the cost-efficient integration of renewables, limiting stranded fossil fuel assets, and alleviating the negative distributional impacts of cost-optimal policies for developing economies.